10.2- Quadratic Functions

Vocabulary: $y=a x^{2}+b x+c$

- Quadratic Function
- Standard Form
- Axis of Symmetry
- Vertex
- y-intercept Where the graph
(1) find axis of symmetry $x=\frac{-b}{2 a}$
(2) find vertex (x, y)

3 find y-int \rightarrow subst. o for x

(4) find 1 more point

Find the axis of symmetry:

$$
\left.\begin{array}{ll}
\text { nd the axis of symmetry: } & 2 x^{2}+4 x-3 \\
a=2 \\
b=4
\end{array} \quad x=\frac{-4}{2 \cdot 2}=\frac{-4}{4}=-1\right)^{x=-1}
$$

$$
c=-3
$$

Axis of Symmetry: $x=\frac{-b}{2 a}$

Find the vertex:

$$
2 x^{2}+4 x-3
$$

* Plug a of s in equation for $x=-1$

$$
\begin{array}{cc}
y=2(-1)^{2}+4(-1)-3 & \text { vertex } \\
2+-4-3 & (-1,-5) \\
-2-3 &
\end{array}
$$

$$
-5
$$

Find the y -intercept:

$$
2 x^{2}+4 x-3
$$

*Plug in a for $x+$ solve for y

$$
\begin{gathered}
(0, c) \quad 2(6)^{2}+\psi(1)-3 \\
(0,-3)
\end{gathered}
$$

2 EXAMPLE Aerial fireworks carry "stars," which are made of a sparklerlike material, upward, ignite them, and project them into the air in fireworks displays. Suppose a particular star is projected from an aerial firework at a starting height of 610 ft with an initial upward velocity of $88 \mathrm{ft} / \mathrm{s}$. How long will it take for the star to reach its maximum height? How far above the ground will it be?
vertex

$$
6100
$$

$$
\begin{aligned}
\rightarrow y & =-16 x^{2}+88 x+610 \\
x=\frac{-b}{2 a} & =\frac{-88}{2(-16)}=+\frac{88}{132}=2.75 \\
y & =-16(2.75)^{2}+88(2.75)+610 \\
& =-121+242+610
\end{aligned}
$$

$$
=731 \mathrm{ft}
$$

$$
><\rightarrow \text { dashed } \geq \leq \rightarrow \text { solid }
$$

$$
\begin{aligned}
& \text { Graph the quadratic inequ } \\
& y=-1 x^{2}+6 x-5
\end{aligned}
$$

(1) axis of sym.

$$
x=\frac{-b}{2 a}=\frac{-6}{2(-1)} \frac{-\frac{6}{2}}{-3)}
$$

(2) vertex

$$
\begin{gather*}
\text { tex }=-(3)^{2}+6(3)-5 \\
-9+18-5 \tag{3,4}\\
9-5=4
\end{gather*}
$$

(3) y-int.

$$
\left.-x^{2}+2\right)-5
$$

(4)

$$
\begin{gathered}
x=1-(1)^{2}+6(1)-5 \\
-1+6-5 \\
5-5 \\
0
\end{gathered}
$$

Homework: pg. 560 \#1-4, 11-14, 16, 20 ,
(II) $f(x)=x^{2}+4 x+3$
(1) axis

$$
x=\frac{-b}{2 a}=\frac{-4}{2}
$$

(3) y-int

$$
\begin{aligned}
& \text { (4) } x=12 \\
& \begin{array}{l}
x=1 \\
(1)^{2}+4(1)+3
\end{array} \\
& 1+4+3=8
\end{aligned}
$$

(12) $y=2 x^{2}-6 x$
(1) axis
(3) $x=O_{2}$ $2(0)^{2}-4(0)$
$0-0$

$$
x=\frac{-b}{2 a}=\frac{7(-6)}{22}=\frac{6 x}{4}=f(12)
$$

(2) Vertex

$$
\begin{gathered}
y=2(1 / 2)^{2}-6(1 / 2) \\
4.5-9 \\
-4.5
\end{gathered}
$$

(4)

$$
\begin{aligned}
& x=1 \\
& 2(1)^{2}-6(1) \\
& 2-6 \\
& -4
\end{aligned}
$$

