5.5-Direct Variation

$$
y=2 x
$$

$$
y=k x
$$

(1) ExAmpLe Is each equation a direct variation? If it is, find the constant of variation.

$$
\begin{aligned}
-2 x-3 y & =1-2 x \\
-\frac{3 y}{-3} & =\frac{1}{3}+\frac{2 x}{3} \\
y & =-\frac{1}{3}+\frac{2}{3} x \quad \text { NO }
\end{aligned}
$$

$$
\begin{aligned}
& .2 x-3 y=0 \\
& -2 x
\end{aligned}
$$

$$
\frac{-3 y}{-3}=\frac{+2 x}{-3}
$$

$$
y=K x
$$

Is each equation a direct variation? If it is, find the constant of variation.

$$
\begin{aligned}
& \text { 1. } \frac{y y}{2}=\frac{5 x}{2}+\frac{1}{2} \\
& y=\frac{5}{2} x+\frac{1}{2} \\
& \text { NO }
\end{aligned}
$$

$$
y=k x
$$

Write an equation for the direct variation that includes the

$$
\begin{aligned}
y & =k x \\
-\frac{2}{3} & =k \cdot \beta 3 \\
-\frac{2}{3} & =k
\end{aligned} \quad y=-\frac{2}{3} x
$$

$$
y=k x
$$

Write an equation of the direct variation that include the given point.
\#11. $(5,1)$
$x y$

$$
\frac{1}{5}=k
$$

$$
y=\frac{1}{5} x
$$

\#13. (-5,-9)
$x y$

$$
\frac{9}{5}=k
$$

$$
y=\frac{9}{5} x
$$

3 example The weight an object exerts on a scale varies directly with the mass of the object. If a bowling ball has a mass of 6 kg , the scale reads 59 . Write an equation for the relationship between weight and mass.
weight varies

$$
\begin{aligned}
& x=\text { mass } \\
& y=\text { weight }
\end{aligned}
$$

$y=\frac{59}{6} x$

$$
x=6
$$

$$
y=59
$$

$$
(x, y)
$$

$$
y=k x
$$

$$
\frac{59}{6}=\frac{k \cdot 6}{6}
$$

$$
\frac{59}{6}=k
$$

23. Earnings When you have a job that pays an hourly wage, the amount you earn varies directly with the number of hours you work. Suppose you earn \$7.10/hour working at the library.
\#earned varies w/ \# of hrs.

$$
\begin{array}{ll}
x=\text { hrs. } & y=k x \\
y=\$ & y=7.10 x
\end{array}
$$

$$
\text { 25. } \begin{array}{|c|c|}
\hline x & y \\
\hline-2 & 1 \\
\hline 3 & 6 \\
\hline 8 & 11 \\
\hline
\end{array} \quad \begin{aligned}
& \frac{y}{x} \\
& \hline
\end{aligned} \quad \begin{aligned}
& \frac{1}{2}=-0.5 \\
& \frac{6}{3}=2
\end{aligned}
$$

NO
(5) Example Suppose a windlass requires 0.75 lb of force to lift an object that weighs 48 lb . How much force would you need to lift 210 lb ?

$$
\begin{aligned}
& 210 \cdot 0.75=48 x \\
& 3.2816 s= \\
& \text { of fore }
\end{aligned}
$$

27. Physics The force you apply to a lever is proportional to the weight you can lift. Suppose you can lift a $50-\mathrm{lb}$ weight by applying 20 lb of force to a certain lever.
a. What is the ratio of force to weight for the lever?
b. Write lift a friend weighing 130 lb .
a

Homework: pg. 280 \#2-6even, 12-16even, 22-26even, 28, 62, 70

