# 9.3

# **The Pythagorean Theorem**

Goal: Use the Pythagorean theorem to solve problems.

| Vocabulary  |                                                       |
|-------------|-------------------------------------------------------|
| Hypotenuse: |                                                       |
| Legs:       | tht mangle, the legs are the sides that form the mole |

### **Pythagorean Theorem**

**Words** For any right triangle, the sum of the squares of the lengths of the legs equals the square of the length of the hypotenuse.





## Example 1 Finding the Length of a Hypotenuse

A building's access ramp has a horizontal distance of 24 feet and a vertical distance of 2 feet. Find the length of the ramp to the nearest tenth of a foot.

$$a^2 + b^2 = c^2$$
 Pythagorean theorem
$$2^2 + 24^2 = c^2$$
 Substitute for a and for b.

$$4 + 570 = c^2$$
 Evaluate powers and add. Take positive square root of each side. 
$$24.08 \approx c$$
 Simplify.

Answer: The length of the ramp is about 24. feet.



Example 2 Finding the Length of a Leg

Find the unknown length a in simplest form.

$$a^2 + b^2 = c^2$$
$$a^2 + 2 = 2$$

Pythagorean theorem

Substitute.

Evaluate powers.

Subtract from each side.



Take positive square root of each side.

units.

Simplify.

Answer: The unknown length a is

Checkpoint Find the unknown length. Write your answer in simplest form.







# Converse of the Pythagorean Theorem

The Pythagorean theorem can be written in "if-then" form.

**Theorem:** If a triangle is a right triangle, then  $a^2 + b^2 = c^2$ .

If you reverse the two parts of the statement, the new statement is called the converse of the Pythagorean theorem.

**Converse:** If  $a^2 + b^2 = c^2$ , then the triangle is a right triangle.

Although not all converses of true statements are true, the converse of the Pythagorean theorem is true.

| _    | - |   | _ |
|------|---|---|---|
| Exam |   | • | - |
|      |   |   |   |
|      |   |   |   |

# Identifying Right Triangles

Determine whether the triangle with the given side lengths is a right triangle.

**a.** 
$$a = 8$$
,  $b = 9$ ,  $c = 12$ 

**b.** 
$$a = 7$$
,  $b = 24$ ,  $c = 25$ 

### Solution

a. 
$$a^2 + b^2 = c^2$$

b.  $a^2 + b^2 = c^2$ 





# Answer:

Checkpoint Determine whether the triangle with the given side lengths is a right triangle.

**4.** 
$$a = 12$$
,  $b = 9$ ,  $c = 15$ 

**5.** 
$$a = 10, b = 25, c = 27$$